Home > AnnaLab Blog > Interfacial dynamics of polymer-grafted nanoparticles

Interfacial dynamics of polymer-grafted nanoparticles

Our paper entitled “Interfacial Dynamics and Rheology of Polymer-Grafted Nanoparticles at Air-Water and Xylene-Water interfaces,” by N.J. Alvarez, S.L. Anna, T. Saigal, R.D. Tilton, and L.M. Walker, was published in Langmuir, 28 (2012) 8052 – 8063.

Dynamics of polymer grafted nanoparticles adsorbing at oil/water and air/water interfaces are characterized along with mechanics of the resulting particle‐laden interfaces.

Abstract: Particle-stabilized emulsions and foams offer a number of advantages over traditional surfactant-stabilized systems, most notably a greater stability against coalescence and coarsening. Nanoparticles are often less effective than micrometer-scale colloidal particles as stabilizers, but nanoparticles grafted with polymers can be particularly effective emulsifiers, stabilizing emulsions for long times at very low concentrations. In this work, we characterize the long-time and dynamic interfacial tension reduction by polymer-grafted nanoparticles adsorbing from suspension and the corresponding dilatational moduli for both xylene–water and air–water interfaces. The dilatational moduli at both types of interfaces are measured by a forced sinusoidal oscillation of the interface. Surface tension measurements at the air–water interface are interpreted with the aid of independent ellipsometry measurements of surface excess concentrations. The results suggest that the ability of polymer-grafted nanoparticles to produce significant surface and interfacial tension reductions and dilatational moduli at very low surface coverage is a key factor underlying their ability to stabilize Pickering emulsions at extremely low concentrations.

Categories: AnnaLab Blog
  1. No comments yet.
  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: